BioNeting – Bio-inspired Networking


Besides to classical research area of bioinformatics, the turn to nature for solutions to technological questions has brought us many unforeseen great concepts. This encouraging course seems to hold on for many aspects in technology. Many efforts were made in the area of computer technology employing mechanisms known from biological systems. The most known examples are evolutionary algorithms and the artificial immune system. One application is in network security, e.g. for the search for viruses and worms, where the immune system was used as an inspiration.
In contrast, the focus of our group lays on trying to map the cellular and molecular biology to networking architectures. Recently, it was shown that the known approaches to study effects in computer networking, especially methods to analyze the behavior of large scale networks suffer from many presumptions. We try to study this behavior by analyzing the internal functioning of network components as well as there interactions in comparison with cellular systems and the associated intra and extra cellular signaling pathways.
The main focus of this work is to show the similarities of computer networks and cellular systems. Based on the knowledge about cellular metabolism, new concepts for the behavior patterns of routers, monitor systems, and firewalls can be deduced and the efficiency of individual sub-systems can be increased. Focusing on examples of hot topics in the computer society, i.e. network security, potential solutions motivated by cellular behavior are currently studied and, hopefully, will soon bring new results in these areas.
Independently from these examinations, we try to show the power of our novel approach by introducing the basic mechanisms and interactions as well as a self-evident application. Doing this, we must keep in mind that the deeper the parallels between biology and technology, the more important it is to map the corresponding elements correctly.

  • Schlüsselwörter: bio-inspired networking; self-organization; organic computing; autonomic networking
  • Projektdauer: 2004-05-01 - 2008-12-31

Projektmitglieder

  • PD Dr.-Ing. habil. Falko Dressler
  • M.Sc. Thomas Halva Labella

Förderer

Mitwirkende Institutionen

  • Dept. of Cellular and Molecular Physiology, University of Erlangen (Dr. Bettina Krüger)
  1. Falko Dressler und Ozgur B. Akan, "A Survey on Bio-inspired Networking," in Elsevier Computer Networks Bd. 54 (6), pp. 881-900, 2010  
  2. Falko Dressler, "Self-Organized Event Detection in Sensor Networks using Bio-inspired Promoters and Inhibitors," Proc. of 3rd ACM/ICST Intern. Conf. on Bio-Inspired Models of Network, Information and Computing Systems, Hyogo, Japan, November 2008
  3. Falko Dressler, "Bio-inspired Feedback Loops for Self-Organized Event Detection in SANETs," 3rd IEEE/IFIP International Workshop on Self-Organizing Systems (IWSOS 2008), Vienna, Austria, pp. 256-261, Dezember 2008  
  4. Falko Dressler, Reinhard German und Bettina Krüger, "Adaptive Data Dissemination in Sensor Networks using WPDD," Proc. of Frontiers in the Convergence of Bioscience and Information Technologies, Jeju, Korea, Oktober 2007
  5. Falko Dressler, Isabel Dietrich, Reinhard German und Bettina Krüger, "Efficient Operation in Sensor and Actor Networks Inspired by Cellular Signaling Cascades," Proc. of 1st ICST/ACM Intern. Conf. on Autonomic Computing and Communication Systems, Rome, Italy, Oktober 2007
  6. Falko Dressler und Iakopo Carreras, "Advances in Biologically Inspired Information Systems - Models, Methods, and Tools"Berlin, Heidelberg, New York, 2007  
  7. Falko Dressler, "Bio-inspired Network-centric Operation and Control for Sensor/Actuator Networks," in Transactions on Computational Systems Biology (TCSB) Bd. VIII (LNCS 4780), pp. 1-13, 2007  
  8. Falko Dressler, "Self-Organization in Sensor and Actor Networks"Chichester, 2007  
  9. Thomas Halva Labella und Falko Dressler, "A Bio-Inspired Architecture for Division of Labour in SANETs," Proc. of 1st IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems, Cavalese, Italy, Dezember 2006
  10. Falko Dressler, Bettina Krüger, Gerhard Fuchs und Reinhard German, "Self-Organization in Sensor Networks using Bio-Inspired Mechanisms," Proc. of 18th ACM/GI/ITG Intern. Conf. on Architecture of Computing Systems - System Aspects in Organic and Pervasive Computing, Innsbruck, Austria, März 2005